skip to main content


Search for: All records

Creators/Authors contains: "Sloyan, Bernadette M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite technological advances over the last several decades, ship-based hydrography remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of physical, chemical, and biological parameters over the full water column essential for physical, chemical, and biological oceanography and climate science. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) coordinates a network of globally sustained hydrographic sections. These data provide a unique data set that spans four decades, comprised of more than 40 cross-ocean transects. The section data are, however, difficult to use owing to inhomogeneous format. The purpose of this new temperature, salinity, and dissolved oxygen data product is to combine, reformat and grid these data measured by Conductivity-Temperature-Depth-Oxygen (CTDO) profilers in order to facilitate their use by a wider audience. The product is machine readable and readily accessible by many existing visualisation and analysis software packages. The data processing can be repeated with modifications to suit various applications such as analysis of deep ocean, validation of numerical simulation, and calibration of autonomous platforms.

     
    more » « less
  2. Abstract

    Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z > 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)